

Overview

- Introduction
- Particle spectra
 - Radial flow
- Elliptic flow measurements in STAR
 - Elliptic flow systematics of negative hadrons
 - Elliptic flow for identified particles
- Summary
- Particle ratios -> Next speaker

Geometry of Heavy Ion Collisions

Central Collisions

Radial Flow (Slope systematics)

Non-central Collisions

Elliptic Flow

Event (Centrality) Selection

PID via dE/dx

h^- : Eta Distribution and $\langle p_t \rangle$ vs. Centrality

<p_t> increases with centrality
For central collisions higher than

For central collisions higher than in min. bias pp collisions @ $\sqrt{s} = 1.8 \text{ TeV (CDF)}$

 $(T_{\pi} \sim 190 - 200 \text{ MeV})$

Inverse slope systematics Λ

Note spectra are not *feed-down* corrected

Some indication that one slope fit is not appropriate at low and high m_t

m_t slopes vs. Centrality

Au+Au central collisions

Au + Au at $\sqrt{s}_{NN} = 130 \text{ (GeV)}$

- Increase with collision centrality
 - **R** consistent with radial flow.

Mass dependence of m_T slope - Radial Flow

Indication of strong radial flow but things appear to be more complex at RHIC than SPS

Depends on fit range

m_T distribution from Hydrodynamics type model

$$E\frac{d^{3}n}{dp^{3}} \propto \int_{\sigma} e^{-(u^{\nu}p_{\nu})/T_{th}} p^{\lambda} d\sigma_{\lambda}$$

$$\mathbf{r} = \tanh^{-1}\mathbf{b}_{r} \qquad \mathbf{b}_{r} = \mathbf{b}_{s} f(r)$$

$$\frac{dn}{m_{T}dm_{T}} \propto \int_{0}^{R} r dr m_{T} K_{1} \left(\frac{m_{T} \cosh \rho}{T_{th}}\right) I_{0} \left(\frac{p_{T} \sinh \rho}{T_{th}}\right)$$

Ref.: E.Schnedermann et al, PRC48 (1993) 2462

flow profile selected
$$(\boldsymbol{b}_r = \boldsymbol{b}_s (r/R_{max})^{0.5})$$

χ^2 map (contour plot for 95.5%CL)

explosive radial expansion at RHIC ⇒ high pressure

m_T distributions: data and model predictions

The bend is changing with particle mass

Elliptic Flow: A schematic view of v₂

v₂: 2nd harmonic Fourier coefficient in dN/dφ with respect to the reaction plane

Elliptic flow observable sensitive to early evolution of system

Large v₂ is an indication of early thermalization

Elliptic flow and thermalization

- Rescattering
 - Converts space anisotropy to momentum anisotropy
- Becomes more spherical
 - Self-quenching
 - ✓ thermalization at Early time

Zhang, Gyulassy, Ko, PL B455 (1999) 45

Charged particle v₂ versus centrality

•compatible with early equilibration

Charged particle and charged pion $v_2(p_t)$ (minimum bias)

 v_2 and $v'_2 = 0$ for $p_T=0$

• V₂ proportional to p_T

• Pions almost identical to h- but not exact

Hydro calculations: P. Huovinen et al.

$v_2(p_t)$ for a thermal source

Simple thermal source

$$v_2(m) = \frac{C_1 - e^{I\sqrt{m^2 + p^2}}C_2}{C_3 + e^{I\sqrt{m^2 + p^2}}C_4}$$

Flow for different species (min. bias)

Summary

- Exploitation/detailed understanding of STAR Y-1 capabilities (centrality, PID, efficiency) allow clear physics statements [point is LOTS OF WORK]
- m, p_T , ϕ systematics of particle spectra reveal collective, thermal components
 - Emergence of consistent picture
- Building towards a consistent picture Spectra
 - $dN/d\eta$ justifies 2D approach focus on transverse degrees of freedom

 - \langle p_T \rangle_{HI} \rangle \langle p_T \rangle_{pp}
 Harder spectra for heavy particles

- BUT "T vs m plot" misleading at best
- Hydro-insprired blast model: consistent fit to spectral shapes
 - T=130 MeV, β =0.52
- Building towards a consistent picture anisotropic flow
 - v_2 result of rescattering in *early* phase of collision
 - For the first time, hydro model describes $v_2(p_T,m,mult)$ almost quantitatively
 - Detailed study reveals *new* feature of freeze-out anisotropy

THE END

SPARE STUFF-not shown

Charged pion $v_2(p_t)$ for different centralities

Examining in detail the discrepancy between hydro and data (mostly at peripheral events)

It appears to be species and/or pt independent

m_T distribution from Hydrodynamics type model

$$E\frac{d^{3}n}{dp^{3}} \propto \int_{\sigma} e^{-(u^{\nu}p_{\nu})/T_{th}} p^{\lambda} d\sigma_{\lambda}$$

$$u^{n}(t, r, z = 0) = (\cosh \mathbf{r}, \overrightarrow{e_{r}} \sinh \mathbf{r}, 0)$$

$$\mathbf{r} = \tanh^{-1} \mathbf{b}_{r} \qquad \mathbf{b}_{r} = \mathbf{b}_{s} f(r)$$

$$\frac{dn}{m_T dm_T} \propto \int_0^R r \, dr \, m_T K_1 \left(\frac{m_T \cosh \rho}{T_{th}} \right) I_0 \left(\frac{p_T \sinh \rho}{T_{th}} \right)$$

Ref.: E.Schnedermann et al, PRC48 (1993) 2462

Approximation (Do not use for wide range fit!)

Inverse slope parameter =
$$T_{th} + m < b_r >^2$$

flow profile selected

$$(\boldsymbol{b}_r = \boldsymbol{b}_s (r/R_{max})^{0.5})$$

$$=T_{th}\sqrt{\frac{1+\langle \boldsymbol{b}_{r}\rangle}{1-\langle \boldsymbol{b}_{r}\rangle}} \qquad (p_{T}>>m)$$

Ref.: I.G.Bearden et al (NA44), PRL78 2080 (1997)

$$(p_T \leq m)$$

$$(p_T >> m)$$

Ref.: H.v. Gersdorff, OM1990 proceedings p.697c

Pt dependence

Excitation function

Different "sub event" methods

Systematic errors

Central Rapidity Region: Charged Multiplicity in Au+Au at $\sqrt{s_{NN}}$ = 130 GeV

Multiplicity Sys Error: 6%
5% most central via ZDC cut
Shape dominated by nuclear geometry

PHOBOS: 3% most central collisions $\langle N_{ch} \rangle = 4200 \pm 470$

52% up compared to SPS

Kaon slopes comparison

• All species have similar slopes

Azimuthal-angle distribution versus reaction plane

 v₂ increases from central to peripheral collisions

$$v_2 = \langle \cos 2\mathbf{f} \rangle$$

Sub Event Correlation

$$\Psi_2^{A,B} = \frac{1}{2} \operatorname{Tan}^{-1} \left(\frac{\sum_{i} w_i \cdot \sin(2\phi_i)}{\sum_{i} w_i \cdot \cos(2\phi_i)} \right)$$

- Non-Flow Effects
 - Momentum conservation
 - HBT, Coulomb (final state)
 - Resonance decays
 - Jets

Thermalfest, July 20, BNL

Topic 5 cont'd: Elliptical Flow

- Hydrodynamical calculations in reasonable agreement
- ⇒ compatible with early equilibration
- Contrast to lower energies where hydro overpredicts elliptical flow Spiros Margetis, Kent

Charged pion and proton + anti proton $v_2(p_t)$ (minimum bias)

Charged particle anisotropy $0 < p_t < 4.5 \text{ GeV/c}$

0.3

- Only statistical errors
- Systematic error 10% 20% for p_t = 2 4.5 GeV/c
- More in the STAR high-pt talk (James Dunlop, PS2, this afternoon)

Why Elliptic Flow Measurements?

- The pressure The pressure gradient generates collective motion (flow)
 - Central collisions: radial flow
 - Peripheral collisions: radial flow and anisotropic flow

Antiproton vs anti-Lambda (x2)

